ShinyNeRF: Modeling Anisotropic Reflections in Neural Radiance Fields

A physically-based NeRF variant that jointly estimates geometry and anisotropic specular parameters from multi-view images.

Albert Barreiro1, 2, Roger Marí1, Rafael Redondo1, Gloria Haro2, Carles Bosch3,
1Eurecat, Centre Tecnològic de Catalunya, 2Universitat Pompeu Fabra, 3Universitat de Vic - UCC

Abstract

Recent advances in digitization technologies have transformed the preservation and dissemination of cultural heritage. In this vein, neural Radiance Fields (NeRF) have emerged as a leading technology for 3D digitization, delivering representations with exceptional realism. However, existing methods struggle to model anisotropic specular surfaces (like brushed metals). In this work, we introduce ShinyNeRF, a novel framework capable of handling both isotropic and anisotropic reflections. Our method is capable to jointly estimate surface normals, tangents, specular concentration, and anisotropy magnitudes of an Anisotropic Spherical Gaussian (ASG) distribution, by learning an approximation of the outgoing radiance as an encoded set of isotropic von Mises-Fisher (vMF) distributions. Experimental results show that ShinyNeRF achieves state-of-the-art performance and offers plausible physical interpretations and editing compared to existing methods.

Contributions

  • Unified NeRF-style framework for both isotropic and anisotropic specular reflections.
  • Joint estimation of normals, tangents, anisotropy and concentration parameters via an ASG/vMF formulation.
  • Physically meaningful parameter maps enabling appearance analysis and editing.
architecture
Figure 1: Overview of the ShinyNeRF architecture.

Video results

GT

ShinyNeRF

Spec-Gaussian

AniSDF

GT (zoom)

ShinyNeRF (zoom)

Spec-Gaussian (zoom)

AniSDF (zoom)


GT

ShinyNeRF

Spec-Gaussian

AniSDF

GT (zoom)

ShinyNeRF (zoom)

Spec-Gaussian (zoom)

AniSDF (zoom)

Comparing methods

GT
GT RGB
GT Normals
ShinyNeRF (ours)
ShinyNeRF RGB
ShinyNeRF Normals
AniSDF
AniSDF RGB
AniSDF Normals
Spec-Gaussian
Spec-Gaussian RGB
Spec-Gaussian Normals
Ref-NeRF
Ref-NeRF RGB
Ref-NeRF Normals

Parameter estimation

Estimated parameters: RGB, tangent, anisotropy, concentration
RGB rendering
Tangent t̂
Anisotropy e
Concentration κ
Predicted
GT
Additional anisotropic parameter estimations
RGB rendering
Tangent t̂
Anisotropy e
Concentration κ
Predicted
GT

ShinyNeRF parameter explorer

Concentration κ
Eccentricity e
Tangent orientation φ
Parameter visualization

BibTeX


@Article{Barreiro2025ShinyNeRF,
  author    = {Barreiro, Albert and Mar\'{i}, Roger and Redondo, Rafael and Haro, Gloria and Bosch, Carles},
  title     = {{ShinyNeRF}: Modeling Anisotropic Reflections in Neural Radiance Fields},
  journal   = {The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year      = {2026}
}
      

This website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This webpage template is from Nerfies. We thank Keunhong Park for developing this template and making it open source.